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SUMMARY 
We study the behaviour of a conjugate gradient Uzawa-type method for a stabilized finite element 
approximation of the Stokes problem. Many variants of the Uzawa algorithm have been described for 
different finite elements satisfying the well-known Inf-Sup condition of Babuika and Brezzi, but it is 
surprising that developments for unstable ‘low-order’ discretizations with stabilization procedures are still 
missing. Our paper is presented in this context for the popular (so-called) Q1-PO element. 

First we show that a simple stabilization technique for this element permits us to retain the property of 
a convergence factor bounded independently of the discretization mesh size. The second contribution of this 
work deals with the construction of a less costly preconditioner taking full advantages of the block diagonal 
structure of the stabilization matrix. Its efficiency is supported by 2D and.3D numerical results. 
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1. INTRODUCTION 

Many numerical methods have been presented for the solution of the mixed finite element 
approximation of the Stokes problem which leads to a linear system of the following form: 

Among these methods, one can choose a variant of the well-known Uzawa algorithm’ by 
applying a conjugate gradient method to the solution of the dual problem associated with (1): 

(2) (B A - 1 B T )  { p >  = B A - 1 f: 
This method has been described and improved by numerous authors2 - 4  for stable discretizations 
by mixed finite elements satisfying the Inf-Sup condition of BabuSka’ and Brezzi6 In this context 
one can assume existence and uniqueness of a solution to (1) and can retain the main property 
that the condition number of B A-’ BT is bounded independently of the mesh size. 
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Unfortunately, for less costly, ‘low-order’ finite elements such as the popular Q1-W, this 
Inf-Sup condition is not satisfied and thus, among other troubles arising from instability, iterative 
methods applied to (1) or (2) are totally inefficient (see References 3 and 7 and Figure 3). 

In order to overcome the difficulties related to unstable discretization, numerous works have 
dealt with the proposal of ‘low-order’ compatible finite elements (mini-element~~.~) or with the 
stabilization of those not satisfying the Inf-Sup condition, i.e. PI-Pl, Q1-Q1 and Ql-P0.7*10-’6 
In most of these stabilization or condensation techniques one replaces the discrete incompressi- 
bility constraint Bu=O by Bu- Cp=O, where C is a regularization matri~,’*’~-’~’ 14-16 and the 
initial mixed problem (1) then becomes 

With benefits from the stabilization, multigrid methods have been successfully used for the 
solution of ( 3 ) , ’ ~ ~  but it is surprising that no developments of the Uzawa algorithm have been 
presented for the solution of the stabilized dual problem associated with (3): 

( B A - ’ B T + C )  { p } = B A - ’ f :  (4) 

In the present paper we want to develop this approach and to prove that the breakdown of 
Q1-PO in the Uzawa algorithm3 can be overcome by taking full advantage of the operator of 
stabilization.16 This leads to an efficient algorithm for the lowest compatible rectangular finite 
element whose simplicity and ‘low cost’, in terms of either storage requirements or CPU time, are 
of main interest, especially for 3D computations. 

The remainder of this paper is organized as follows. Sections 2 and 3 deal with the Stokes 
equations, the Q1-PO discretization and the Stabilization procedure. A criterion for the choice of 
the operator C is given, as proposed in Reference 16, and the ‘local jump formulation’ of Kechkar 
and Silvester is adopted. In Section 4 we concentrate our attention on Uzawa-type algorithms for 
the solution of (2) or (4). A comparison between these two variants clearly shows the benefits of 
the stabilization, which permit one to retain the main property that the operator B A -  ’ BT+ C is 
positive definite and has a condition number bounded independently of the mesh size, which of 
course may not be assumed in the non-stabilized case (2). For the solution of (4) we apply 
a standard conjugate gradient method improved by using the preconditioner” 

L= diag (B A-’ B’)+ C, where A=diag(A). (5 )  

This less costly preconditioner does not require the exact solution of a ‘pressure Laplacian-type 
equation’2 for the pressure and makes the most use of the block diagonal structure of the 
matrix C. Its efficiency is supported by two- and three-dimensional experiments for the test 
problem of the lid-driven cavity. 

2. THE FINITE ELEMENT DISCRETIZATION 

Let us recall the velocity-pressure formulation of the steady state Stokes equations given in its 
simplest form: 

- Au + grad( p) =f in R, (64 

divu=O in R, (W 
u=O o n r ,  (64  

p dR=O, I 
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where R is an open 'regular' bounded domain of Rd ( d = 2  or 3) and r its boundary and where 
u and p represent respectively the velocity field and the pressure field of an incompressible viscous 
(with viscosity equal to unity) fluid subject to exterior forces f: 

If non-homogeneous boundary conditions are used (u = g on r), they must satisfy 

l r g - N  dT=O. 

Let X = (H: (R))d and M = L$(R) = {q/q E Lz(R), Jn q dR=O>; then the variational formulation of 
(6a)-(6d) is given as follows. 

(VF) Find u E X and p E M such that 

grad@) * grad@) dR - p div u dR = f. u dR V u  E X, 
J-n I n  

In qdivudR=O V q E M .  

(See Reference 18 for the existence and uniqueness theorem for this mixed problem.) 

later, one then obtains the following discrete variational formulation. 
Given the finite-dimensional subspaces X h C X  and M h c  M, which will be specified a little 

(VF), Find U h E X h  and P h  E M h  such that 

Jn grad(uh) * grad(Uh) dR - P h  div Uh dR = fh ' oh & v ' v h  E X h ,  

Jn q h  diVuhdR=O V q h € M h .  

J-n J-n 

This can also be written in matrix form as 

where Ah and Bh are the discrete operators respectively associated with (-AU) and (-div) such 
that 

a(%, u h ) =  grad(Uh)'grad<uh) d R = < U h ) T  C A h l  {%I}, 
J-n 

J-n 
b(Uh,  q h ) = -  q h  divufi&=<q:)CBhl {uh} .  

Of course, the spaces Xh and M h  cannot be chosen independently of one another in order that 
problem (7) has a unique solution. They must satisfy the Inf-Sup discrete condition of BabuSka5 
and Brezzi6 

(BB) There is a constant k independent of h such that 

jn qhBhuh dR ~, 0. Inf sup 
qheMh uhaXh 11 ' h  11 xh 11 q h  It Mh 

If the (BB) condition is not satisfied, the discretization ( X h ,  M h )  is unstable and the uniqueness 
(even existence) of a solution for problem (7) cannot be assumed ( B h  is not surjective, B;f not 
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injective). Moreover, the solution may be unique but totally unreal is ti^,'^^'^^'^^^^ being still 
affected by the well-known spurious modes,20 and iterative methods can be inefficient owing to 
the ‘very bad’ condition number of the operators (see References 3, 7 and 16 and Figure 3 for 
Ql-PO). One therefore has to filter the (so-called) spurious pressure modes which do not 
correspond to p = constant in order to avoid these troubles, which have been clearly and 
extensively presented by Sani et al.” for Q1-PO. 

One way of proceeding consists of adding a regularization term to the discrete incompressibility 
condition, which then becomes 

In q h  div Uh dRfCh(qh, Ph)=o VqhEMh, 

where Ch is a symmetric, bilinear and semipositive form on Mh x Mh. One then obtains the 
following new stabilized variational formulation. 

(SVF)h Find Uh E Xh and Ph E Mh such that 

grad(Uh) ’ grad(Uh) dR - ph div Uh dR = f h  ’ Uh dR VUh E xh, 
J n  I 

jn qhdivuh dR+Ch(qh, p h ) = O  VqhEMh- 

This idea, initially proposed by Brezzi and Pitkaranta,’ ’ has been developed by numerous 
authors (see e.g. References 7,8, 10, 12 and 14-16). Kechkar and Silvester16 propose choosing Ch 
in order to satisfy the following criterion of filtering the spurious pressure modes. 

(CR) Ch(ph, ph) = O  and ph div Uh dR = 0 are simultaneously satisfied only by ph = constant. 
j a  

Then one has the existence and uniqueness of the solution (see Reference 16 for a proof). 

Assume that Ch satisfies the (CR) criterion; then problem (SVF)h admits a unique solution 

Unfortunately, no consequence can be derived from (CR) about the accuracy of the numerical 
results or the condition number of the operators. In Reference 16 two stabilization procedures 
(the ‘global jump formulation’ and the ‘local jump formulation’) have been proposed giving 
efficient cures to these latter troubles. 

(uh, p h ) E x h  Mh. 

3. THE KECHKAR-SILVESTER STABILIZATION FOR THE Q1-PO ELEMENT 

Let Th be a partitioning of R into quadrilaterals, one of which defines the spaces XhcX and 
MhCM by 

Xh={VEXACo(R)/VIKE(Q1(K))d VKETh} (d=2 Or  3), 

Mh={PEM/pkEPO(K) V K E  Th}, 
where Q , ( K )  is the space of bilinear functions on K and P o ( K )  is the space of constant functions 
on K. The pair (xh, Mh), usually referred to as the Q1-PO finite element, does not satisfy the (BB) 
condition and thus provides an unstable scheme subject to spurious pressure modes pm.  

Assume that the elements in Th have been assembled into N regular macro-elements of 2‘ 
quadrilaterals; then p,,, is the well-known checkerboard mode” (d = 2) given by Figure 1. 
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Figure 1.  Spurious pressure modes on a macro-element M 

Remark. There are four spurious pressure modes for d = 3.20 

In order to filter the spurious pressure modes, Kechkar and Silvester16 propose the following 
three choices satisfying the (CR) criterion: 

where h denotes the mesh size (defined locally), E is a penalization parameter (~>0), b is a 
stabilization parameter (B>O). [ .] is the 'pressure jump' operator,14*16 Xi ( i =  1, . . . , N , )  are the 
N s  interior inter-element boundaries (edges in 2D, faces in 3D) and 8I-Y (i = 1, . . . , nd) are the n d  

inter-element boundaries strictly within each macro-element M (nd =4  for d = 2 and n d  = 12 for 
d = 3). 

Equations (8aH8c) are respectively called the consistent penalty formulation, the 'global jump 
formulation' and the 'local jump formulation'. The first choice (8a) is a standard penalization 
technique. This methodology, assuming existence and unicity of a solution, is extensively used 
with the Q1-PO element,13-19 but numerical results for the pressure field p are still affected by the 
checkerboard mode and no cure is obtained for the breakdown of iterative methods.16 The 
second choice (8b) has been presented in References 12 and 14. The summation is over all N s  
interior-element boundaries, in contrast to the choice ( 8 ~ ) ' ~  where the summation runs only over 
the inter-element boundaries strictly within each macro-element M .  

A comparison of these techniques is done in Reference 16 showing the accuracy of the latter 
two choices (8b) and (84, and in the following we choose the 'local jump formulation' (8c) because 
of the very attractive structure of the stabilization matrix. 

(SFV)h can be recast in the following matrix form: 

For an appropriate numbering strategy the matrix Ch has a block diagonal structure where each 
block Cfr" corresponding to a macro-element M (see Figure 2) is of the form 

/ 2 -1 0 - l \  

1-1 0 -1 2 /  
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Figure 2. Numbering of quadrilaterals in a macro-element M 

3 - 1  - 1  0 -1 0 0 0 

3 - 1  0 0 - 1  0 

for d = 3 .  (1 1) 

3 -1 
0 -1 0 -1 -1 

In the following we choose f l= 1, as advocated in Reference 16, and for convenience of writing, the 
subscript h will be omitted where this does not lead to confusion. 

4. A STABILIZED CONTEXT UZAWA-TYPE ALGORITHM 

4.1. Introduction 

In standard Uzawa-type algorithms one deals with the dual problem (2). For stable discret- 
ization by finite elements satisfying the (BB) condition, the operator L= B A  - BT is strictly 
positive definite and provides a condition number bounded independently of the mesh size.4 

Nevertheless, the matrix L is only given in an implicit way (because of the term A-') which 
forbids the use of all methods requiring decompositions of L, but being able to evaluate the 
matrix-vector product Lw for an arbitrary w is sufficient for using gradient-type methods: 

p"+ 1 = p" + p n  o_-  ' ( L  p"- g), 

where 5 is a preconditioner for L. 
Conjugate gradient algorithms applied to problem (2) have been widely described and im- 

proved by numerous authors in the context of finite elements satisfying the (BB) Id-Sup 
condition, e.g. by Verfurth4 (multigrid solver for Poisson-type equations), Cahouet and Chabard' 
(different techniques of preconditioning) and Robichaud et aL3 ('incomplete Uzawa algorithm'). 

In 3D good results have been presented for the enriched brick Ql-P13 and for the P2-Pl 
tetrahedron with continuous pressure,' but Uzawa-type algorithms have been clearly demon- 
strated to be inefficient for Ql-P0.3 In the following we will show that this breakdown can be 
overcome by using a stabilization procedure16 which permits us to retain the property of 
condition number bounded independently of h for the stabilized operator" BA-'BT+ C and 
thus we obtain a less costly Uzawa algorithm owing to the low storage and computational 
requirements of Q1-PO (especially in the 3D case). 
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In order to enhance the convergence factor of the conjugate gradient method, we describe in 
Section 4.3 a new preconditioner" making the greatest use of the block diagonal structure of the 
stabilization matrix C. 

Remark. At every iteration step the evaluation of Lp" = B A -  BTp" leads to the computation of 
z" = A-'BTp", which must be interpreted as the solution of a Poisson-type problem 

A Z" = BTp". (12) 

An easy way is to use Choleski decomposition of the matrix A, which can be rather less expensive 
owing to the formulation of a ( . )  and the choice of a low-order discretization. In effect, A is 
obtained by reproducing for each component of the velocity the discrete scalar Laplacian 
corresponding to the bilinear element. Naturally, for a symmetric stress tensor or augmented 
Lagrangian formulation the components are then coupled, so it can be of major interest to use 
iterative  solver^.^.^ 

4.2. Breakdown of the non-stabilized algorithm 

For the non-stabilized dual problem (2), 

Lp = ( B A  - 'BT)p = B A  - ' f =  g, 

we obtain the standard conjugate gradient Uzawa algorithm.' Unfortunately, for the Q1-PO 
finite element discretization, L is only semipositive (Ker (L)  contains the spurious pressure mode 
given in Figure 1). However, if (2) admits a solution, we can obtain a convergent conjugate 
gradient method. In effect, we recall the following result.21 

Assume that M 20 and c E Im(M); then M x  = c admits a unique solution x* E Im ( M )  and the 
conjugate gradient iterated term x" converges to x*. 

For a 'well-posed' problem (in the sense that 0 E Im(B)) the proposed conjugate gradient method 
leads to the curves of the evolution of the residual 11 Lp" - g  11 presented in Figure 3 for different 
values of the mesh size h and for 2D and 3D computations. 

It clearly appears that the convergence factor of this method degrades significantly when the 
problem size decreases (see also Reference 3), owing to the instability of the Q1-PO finite element 
discretization leading to an ill-conditioned matrix L(O(h-2).19,22 Thus the necessity for a 
stabilization procedure is evident. 

0 0 
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-10 -1 0 

-12 -12 

0 1 0  20 30  4 0  0 20  4 0  60 80 100 120 
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Figure 3. Evolution of the residual 11 Lp"-g  11 in the non-stabilized case: (a) 2 D  (b) 3D 
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4.3. Eficiency of the stabilized algorithm 

4.3.1. Properties of the stabilized dual operator. Eliminating the velocity vector u, problem (9) 
may be reformulated as the corresponding stabilized dual problem for the pressure: 

Ls p = ( B  A - BT + C) p = B A - f =  g. (13) 

As an immediate consequence of the (CR) criterion satisfied by C, the symmetric matrix & is 
positive definite on M h :  

vq E Mh (q ZO) qT&q = qT(BA -1BT)q + qTCq 
=(BTq)TA- ' (BTq) + qTCq > 0, 

since BTq and qTCq are simultaneously zero only for q=constant from (CR). Thus a conjugate 
gradient method is applied to (13) and we retain the property that the convergence factor is 
bounded independently of the mesh size, as clearly seen in Figure 4. 

We think, supported by the comparison Ql-PO/Ql +-P1 of Robichaud et ~ l . , ~  that this result is 
very important. With a simple stabilization procedure one can efficiently cure the bad properties 
of an unstable discretization and thus provide an efficient Uzawa algorithm, up to now missing, 
for the less costly and very popular Q1-PO. 

4.3.2. Construction of apreconditioner. It is important to recall that the operator L= BA- 'BT 
(or L s = B A - ' B T + C )  is only given in an implicit way (because of A - ' )  and thus forbids all 
decompositions of L as preconditioner. 

Cahouet and Chabard2 propose different preconditioners for the dual formulation of the 
steady or unsteady quasi-Stokes problem. A direct application of their techniques in our steady 
stabilized case leads to the following preconditioner: 

[Ls = B A -  BT + C, where b= diag(A). (14) 

In order to take into account the block diagonal structure of the matrix C(which is not the case 
with B b -  ' BT), we propose the new pre~onditioner'~ 

& = diag(Bb- BT) + C, where A= diag(A). (15) 

Such a preconditioner, taking full advantage of the structure of $, is much less costly, since it 
reduces to the solution of N independent subsystems of small size: 4 x 4 for d = 2  and 8 x 8 for 
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Figure 4. Evolution of the residual 11 & p"-g  )I in the stabilized case: (a) 2D, (b) 3D 
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d= 3 (N is the number of macro-elements). Moreover, the independence of these systems can be 
used on parallel computers. 

This choice of preconditioner is supported by the performances presented in Figure 5 and its 
efficiency seems to be improved for 3D computations. 

Remark. For convenience of writing in the legends of the figures we use (NS) for ‘non- 
stabilized’, (SNP) for ‘stabilized but not preconditioned’ and (SP) for ‘stabilized and precon- 
ditioned’. 

A measure of improvement is proposed in Figure 6, where the reader can appreciate the 
benefits coming from the stabilization contribution and from the preconditioning one. 

5. CONCLUSIONS 

A stabilization procedure has permitted efficient use of a Uzawa-type method for a ‘low-order’ 
discretization of the Stokes problem with finite elements not satisfying the BabuSka-Brezzi 
Inf-Sup condition. With benefits from the stabilized context we have retained the usual result (for 
stable discretization) that the convergence factor is bounded independently of the mesh size, and 
a preconditioner profiting from the block diagonal structure of the stabilization matrix has led to 
good results. This approach, up to now missing, has permitted us to use one of the ‘cheapest’ and 
most popular elements for 3D problems, i.e. the Q1-PO element. These techniques, initially used 
in 2D  computation^,'^ have been extended to 3D problems (see Reference 16 for the 3D 
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Figure 5. Efficiency of the preconditioner in the stabilized case: (a) 2D, (b) 3D 
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stabilization procedure) and we hope now to utilize them efficiently in the setting of a class of 
more general methods, the so-called ‘incomplete Uzawa a lg~r i thm.~  The first results obtained by 
a ‘complete Uzawa-type’ method have been very encouraging. 
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